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Abstract A new 3D hybrid finite-difference (FD)
method is presented that accounts for finite conductivity. The
field gradients inside conductors and structural details are
treated combining quasi-static field solutions with the full-
wave analysis. In the quasi-static regime, the magnetic field
computations and the corresponding source formulation
needs special consideration The hybrid method reduces
computational efforts while maintaining accuracy of the
conventional FD scheme. The new approach is verified for a
MMIC coplanar short stub and airbridges.

1. INTRODUCTION

The finite-difference method (FDM) is one of the most
powerful electromagnetic  simulation tools today.
Nevertheless, its efficiency is still too low to meet the
designers demands in terms of geometrical complexity
and accuracy. This is especially true when analyzing
coplanar monolithic microwave integrated circuits
(MMICs), where metalization thickness and finite
conductivity have to be considered [1].

In the past, enhanced FDTD methods where proposed
incorporating the asymptotic field behavior around
microstrip discontinuities [2],[3]). Recently, hybrid finite-
difference methods for transmission-line problems were
presented [4]-[6]. They are based on the finite integration
scheme (7]. Line and surface integrals are multiplied with
so-called correction factors. A pure numerical approach
[4], based on the quasi-static approximation, and a semi-
analytical method [5],[6], which uses closed-form
expressions for the correction factors, are described in the
literature. It has been demonstrated that the numerical
efficiency can be increased significantly while achieving
the same order of accuracy as with the conventional finite-
difference formulation. This is due to the reduction in
mesh-size. Field details like singularities and skin-effect
current distribution do not need an electro-dynamic
analysis. Hence, they are described by quasi-static field
computations on a fine grid (i.e., with high resolution, and
expressed as correction factors). The dynamic part of the
anlysis can then be performed on a much coarser grid.

Till today, however, a hybrid FD method for 3D
problems has been proposed only for lossless structures
(i.e., perfect conductors) [8]. In this contribution, a new

.

3D hybrid method is presented, which includes finite
conductivity.

The quasi-static analysis separates in two parts. The
magneto-quasi-static one is related to the currents in the
conductors and thus frequency dependent. The second.
part is the electro-static one, which is governed by the
surface charges on metalizations and frequency
independent. Both quasi-static problems are solved by
means of a FD approach here.

In the following, the 3D hybrid FD method is described
in detail, with emphasis on the magneto-quasi-static part,
which is more involved than the electro-static one. Theory
is based on Maxwell grid equations, which allows for a
very compact formulation. Verification is done by
comparison to the conventional FD scheme [1].

1. HYBRID FINITE-DIFFERENCE METHOD

A. Maxwell grid equations

Our FD formulation is based on the finite integration
approach [7]. This provides a one-to-one translation of
Maxwell's equations on a staggered grid G—G . Thus, the
Maxwell grid equations (MGE) for time harmonic fields in
inhomogeneous, biaxial media can be written as follows:
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In the general form of MGEs (1)...(7) integral quantities.
as electric voltages e, electric currents i, electric flux
densities d, magnetic voltages 4, and magnetic flux
densities b are collected in vectors, which contain the
discretized values at the grid points. C,C,S,and Sare
discrete Vx-, V.- operators in the staggered grid G-G .|
D;,D,,andD, denote diagonal matrices. They are’
discrete  representations of the material tensors:
[,u]",[sland [6]. Their elements are defined as h/b, de,
and i/e.

The MGEs (1)...(4) are exact representations of
Maxwells equations in integral form and do not introduce
discretization errors. The actual discretization occurs only
when the material equations are replaced by the matrix
relations (5)...(7). The MGEs (1)...(7) represent a fully
general discrete replacement of the analytical Maxwell
equations.

B. Magneto-quasi-static field solution

For the quasi-static case, i.e., as far as the characteristic
dimensions remain small compared to wavelength,
displacement currents can be neglected. Eqn. (1) then
reads

Ch=1. ®)

Combining (2), (5), (6), (7), and (8) a discrete
formulation of the analytical differential equation
Vx[ul?- VxE)+jw[a]E=—jw[a]E‘0 can be derived.
The right-hand side represents a source term. The
corresponding FD equation reads

(@DyC+ jaD, § =—jwD,z,. ©)

An important question is the choice of the source term
é,. It must be divergence-free and fulfill the boundary
conditions on conductor surfaces (i.e., its normal
component must vanish there). In the 3D case, such a
source term is not easy to find. We use the static current
distribution within the metalizations of the structure under
investigation. The static current distribution and the
corresponding electric field can be derived from a
potential. Hence, the electric voltages &, are given as

(10

where @ is the vector containing the potential on any
grid node (for S, see eqns. (3)). Equation (10) is a
discrete representation of the analytical differential
equation £ =V-¢. Note that this potential is defined only
within the conductors. Its distribution can be found
solving

&= _§r¢' >

-SD,S"¢=0 an

which is equivalent to the differential equation
V.lo] V-¢=0. The normal component of &, must
vanish on all conductor surfaces, except the ports, where
currents are feeded. There, one assumes a purely normal
current flow, i.e., &, has no tangential component and the
potential is constant. Its value at each port represents the
source and has to be chosen according to the desired field
characteristics.

Fig. 1. Magneto-~quasi-static analysis of an MMIC airbridge
structure: Potential values at the ports, used to determine the
static excitation current.

Fig. 1 illustrates this choice of potential distributions at
the ports for a coplanar air-bridge, when considering the
coplanar mode. Beyond the port metalization surfaces, all
other conductor surfaces within the three dimensional
structure are terminated by perfect magnetic conductors.

After solving (9) for a given source distribution the
magnetic field can be found using (2).

C. Electrostatic field solution

The electrostatic field solution is restricted to non-
conducting regions. It can be found using equations (10)
and (11) and replacing D, withD,. The structure is
surrounded by magnetic and/or electric walls,
respectively. For the airbridge configuration in Fig. 1, the
front and back plane have to be terminated by magnetic
walls, To each of the non-connected parts of the
metalization, a different potential value must be assigned.

D. Modified MGEs and correction factors

In order to incorporate the quasi-static field solutions in
the dynamic analysis, one modifies the integral quantities,
voltages (e, h) currents (i), and fluxes (d, b), in eqgns.
(1)...(7). The accuracy of the first-order FD integral
approximation is improved by introducing correction
factors ¢l and cf for line integrals and surface integrals,
respectively. The correction factors are obtained from a
high-resolution (quasi-static) field computation as shown
in Fig. 2 [4].

From the theoretical point of view, implementing the
correction factors can be understood as introducing
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artificial anisotropic materials, which replace the original
material configuration.

E electric field from quasi-static analysis

EnAl

0 A

Fig.2.  Accuracy improvement by correction factor (example
for electric line integral): The simple form E'Al is replaced by
E'Al-cle in order to give the same integral value as for the high-
resolution analysis.

I1I. THE HYBRID PROCEDURE

The hybrid FD method comprises a quasi-static and a
dynamic part. The quasi-static field computations are
performed on a fine grid, the dynamic analysis on a coarse
one.

Regarding the procedure, first the coarse and fine grids
are generated. Then, the quasi-static field computations
are performed, correction factors are calculated and stored
in external files. In the next step, an eigenvalue problem is
solved on the coarse grid at the ports of a given structure
(e.g., the front and the back plane of the airbridge in
Fig. 1), which is necessary to determine the S parameters.
The resulting eigenmodes are then used as excitations of
the 3D dynamic field computations. Finally, the S
parameters are extracted.

IV. VERIFICATION

In order to verify the new hybrid FD method in
frequency domain (hyb. FDFD), the MMIC-typical
coplanar structures in Fig. 3, a CPW short-stub and an
airbridge, are studied. The conventional FD method
(FDFD) serves as a reference [1).

In Figs. 4 — 6, the results of the new hybrid method are
compared to conventional FDFD. For the CPW short-
stub, the magnitude of the reflection coefficient S, is
plotted in Fig. 4. We find differences of less than 0.12
degree over the entire frequency range.

Further verification of the hybrid method is done
comparing the results for two airbridges of different
dimensions. In Fig. 5, reflection |S,,| / dB is plotted as a
function of frequency. The agreement between the hybrid
and the conventional method is good, only at 100 GHz
small deviations are observed.

CPW short-stub CPW airbridge

cross-section

cross-section

Vacuum

side-view _ irteference plane

reference plane

|
f

bl o Iy b

-— T

Fig. 3.  The two structures under investigation: CPW short-
stub and airbridge.
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Fig. 4. Reflection coefficient of the CPW short in Fig. 4:
magnitude S, against frequency (dimensions: s = 15 um, w = 20
pm, ¢ =3 um, h =200 pm, /, = 100 pm, enclosure: a = 703 um,

= 250 um, ¢ = 700 um; material properties: € = 12.9, ¢ =
30 S/um ).

In practical design, a second parameter is to be
considered describing the airbridge, which is its influence
on transmission phase, the effective length extension Algpy
=-arg S,/ B.., - Fig. 6 presents the data for airbridge 1 and
2. The negative sign indicates that the electrical length
reduces when inserting the airbridge. The differences of
the two FD versions are smaller than 0.3 um for both
bridges, which is well below the practical requirements
and proves accuracy and usefulness of the hybrid
approach.
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Fig. 5. Reflection magnitude [S,| / dB of the airbridges
according to Fig. 3 against frequency (airbridge 1: s =15 pm, w
=20um, ¢=3um, k=175 um, ¢, =04 um,/ =3 um, =10
pm, I, =30 um.; enclosure: a = 481 pm, b = 250 pm, ¢ = 672
um; material properties: € = 12.9, ¢ = 30 S/um; airbridge 2:
dimensions: s = 15 yum, w =20 pm, ¢ =3 pm, A= 175 um, ¢, =
1.5 um, [, =5 pm, [, = 10 um, /, = 20 um; enclosure: a = 631
um, b =250 um, ¢ = 650 um; material properties: €, = 12.9, 6 =
30 S/um).
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Fig. 6.  Effective length extensions -Al,, = arg S,, / B, of

the CPW airbridges in in Fig. 5 as a function of frequency.

Regarding the computational efforts, the hybrid method
requires about 1/6 of the the conventional method for the
airbridges, while for the short stub the value is about 1/3.
With the new method, one has to run only a single high-
resolution magneto-quasi-static field computation per
frequency point. In conventional analysis, however, as
many field computations as modes at the ports are
considered must be performed. Moreover, the better
matrix condition of the magneto-quasi-static linear system
should allow for further speed-up in analysis. The
memory requirements are almost the same so far, since the
magnetic quasi-static case involves the same number of
unknowns as its dynamic counterpart. This can be
improved, however, when applying the correction-factor

approach only to subregions of a structure, preferably
those with critical field resolution.

V. CONCLUSIONS

The incorporation of quasi-static field solutions into the
finite-difference method is shown to give a marked
improvement in CPU time against the conventional FD
method while maintaining. accuracy. This holds also in
the lossy case. It is of particular interest here, since skin
depth increases the required resolution compared to the
lossless case. Systematic exploitation of the combined
quasi-static and dynmaic analysis will allow to study more
complex structures and to speed up design process.
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