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Abstract - A new 3D hybrid finite-difference (FD) 
method is presented that accounts for finite conductivity. The 
geld gradients inside conductors and structural details are 
treated combining quasi-static field solutions with the full- 
wave analysis. In the quasi-static regime, the magnetic field 
computations and the corresponding source formulation 
needs special consideration The hybrid method reduces 
computational efforts while maintaining accuracy of the 
conventional FD scheme. The new approach is verified for a 
MMIC coplanar short stub and airbridges. 

The finite-difference method (FDM) is one of the most 
powerful electromagnetic simulation tools today. 
Nevertheless, its efficiency is still too low to meet the 
designers demands in terms of geometrical complexity 
and accuracy. This is especially true when analyzing 
coplanar monolithic microwave integrated circuits 
(MMICs), where metalization thickness and finite 
conductivity have to be considered [ 11. 

In the past, enhanced FDTD methods where proposed 
incorporating the asymptotic field behavior around 
microstrip discontinuities [2],[3]. Recently, hybrid finite- 
difference methods for transmission-line problems were 
presented [4]-[6]. They are based on the finite integration 
scheme [7]. Line and surface integrals are multiplied with 
so-called correction factors. A pure numerical approach 
[4], based on the quasi-static approximation, and a semi- 
analytical method [5],[6], which uses closed-form 
expressions for the correction factors, are described in the 
literature. It has been demonstrated that the numerical 
efficiency can be increased significantly while achieving 
the same order of accuracy as with the conventional tinite- 
difference formulation. This is due to the reduction in 
mesh-size. Field details like singularities and skin-effect 
current distribution do not need an electro-dynamic 
analysis. Hence, they are described by quasi-static field 
computations on a fine grid (i.e., with high resolution, and . 
expressed as correction factors). The dynamic part of the 
anlysis can then be performed on a much coarser grid. 

Till today, however, a hybrid FD method for 3D 
problems has been proposed only for lossless structures 
(i..e., perfect conductors) [8]. In this contribution, a new 

3D hybrid method is presented, which includes finite 
conductivity. 

The quasi-static analysis separates in two parts. The 
magneto-quasi-static one is related to the currents in the 
conductors and thus frequency dependent. The second. 
part is the electro-static one, which is governed by the 
surface charges on metalizations and tiequency 
independent. Both quasi-static problems are solved by 
means of a FD approach here. 

In the following, the 3D hybrid FD method is described 
in detail, with emphasis on the magneto-quasi-static part, 
which is more involved than the electro-static one. Theory 
is based on Maxwell grid equations, which allows for a 
very compact formulation. Verification is done by 
comparison to the conventional FD scheme [I]. 

II. HYBRIDFINITE-DIFFERENCEMETHOD 

A. Maxwell grid equations 

Our FD formulation is based on the finite integration 
approach [7]. This provides a one-to-one translation of 
Maxwell’s equations on a staggered grid G - G . Thus, the 
Maxwell grid equations (MGE) for time harmonic fields in 
inhomogeneous, biaxial media can be written as follows: 

e<= j&-+-i (1) 

Cz=-j& (2) 

%i=o (3) 

SC=0 (4) 

j&D;‘; (5) 

li=D,Z (6) 

;=D,e’ (7) 
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In the general form of MGEs (1). . .(7) integral quantities 
as electric voltages e, electric currents i, electric flux 
densities d, magnetic voltages h, and magnetic flux 
densities b are collected in vectors, which_ contain_ the 
discretized values at the grid points. C,C, S, and S ze 
discrete V x -, V. - operators in the staggered grid G - G .: 
D;’ , D, , and D, denote diagonal matrices. They are’ 
discrete Iur,, [EI az;;yions of the material tensors 

en elements are defined as h/b, d/e, 
and i/e. 

The MGEs (1). . .(4) are exact representations of 
Maxwells equations in integral form and do not introduce 
discretization errors. The actual discretization occurs only 
when the material equations are replaced by the matrix 
relations (5)...(7). The MGEs (l)...(7) represent a fully 
general discrete replacement of the analytical Maxwell 
equations. 

B. Magneto-quasi-staticfield solution 

For the quasi-static case, i.e., as far as the characteristic 
dimensions remain small compared to wavelength, 
displacement currents can be neglected. Eqn. (1) then 
reads 

Eh=i. (8) 

Combining (2), (5), (6), (7), and (8) a discrete 
formulatio of the analytical differential equation 
VX~~‘~&X~)+ jw[O$=-jw[O~O can be derived. 
The right-hand side represents a source term. The 
corresponding FD equation reads 

(ED,‘C + j oD, b = -j oD,Z,, . (9) 

An important question is the choice of the source term 
ZO. It must be divergence-free and fulfill the boundary 
conditions on conductor surfaces (i.e., its normal 
component must vanish there). In the 3D case, such a 
source term is not easy to find. We use the static current 
distribution within the metalizations of the structure under 
investigation. The static current distribution and the 
corresponding electric field can be derived from a 
potential. Hence, the electric voltages .ZO are given as 

+-&j, (10) 

where 6 is the_vector containing the potential on any 
grid node (for S , see eqns. (3)). Equation (10) is a 
discrete representation of the analytical differential 
equation E = V. $ . Note that this potential is defined only 
within the conductors. Its distribution can be found 
solving 

which is equivalent to the differential equation 
V. [cr]. V .Q = 0 . The normal component of Z0 must 
vanish on all conductor surfaces, except the ports, where 
currents are feeded. There, one assumes a purely normal 
current flow, i.e., Z0 has no tangential component and the 
potential is constant, Its value at each port represents the 
source and has 
characteristics. 

to be chosen according to the field 

Fig. 1. Magneto-quasi-static analysis of an MMIC airbridge 
structure: Potential values at the ports, used to determine the 
static excitation current. 

Fig. 1 illustrates this choice of potential distributions at 
the ports for a coplanar air-bridge, when considering the 
coplanar mode. Beyond the port metalization surfaces, all 
other conductor surfaces within the three dimensional 
structure are terminated by perfect magnetic conductors. 

After solving (9) for a given 
magnetic field can be found using 

C. Electrostatic field solution 

distribution the 

The electrostatic field solution is restricted to non- 
conducting regions. It can be found using equations (10) 
and (11) and replacing D, with D, . The structure is 
surrounded by magnetic and/or electric walls, 
respectively. For the airbridge configuration in Fig. 1, the 
front and back plane have to be terminated by magnetic 
walls. To each of the non-connected parts of the 
metalization, a different potential value must be assigned. 

D. Modified MGEs and correction factors 

In order to incorporate the quasi-static field solutions in 
the dynamic analysis, one modifies the integral quantities, 
voltages (e, h) currents (i), and fluxes (d, b). in eqns. 
(1). ..(7). The accuracy of the first-order FD integral 
approximation is improved by introducing correction 
factors cl and cf for line integrals and surface integrals, 
respectively. The correction factors are obtained from a 
high-resolution (quasi-static) field computation as shown 
in Fig. 2 [4]. 

From the theoretical point of view, implementing the 
correction factors can be understood as introducing 
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artificial anisotropic materials, which replace the original 
material configuration. 

E electric field from quasi-static analysis 

YE .dl 
cle = 4-_ 

E ‘.AI 

0 A 

Fig. 2. Accuracy improvement by correction factor (example 
for electric line integral): The simple form E’.Al is replaced by 
E’.AI. cle in order to give the same integral value as for the high- 
resolution analysis. 

III. THE HYBRID PROCEDURE! 

The hybrid FD method comprises a quasi-static and a 
dynamic part. The quasi-static field computations are 
performed on a fine grid, the dynamic analysis on a coarse 
one. 

Regarding the procedure, first the coarse and tine grids 
are generated. Then, the quasi-static field computations 
are performed, correction factors are calculated and stored 
in external files. In the next step, an eigenvalue problem is 
solved on the coarse grid at the ports of a given structure 
(e.g., the front and the back plane of the airbridge in 
Fig. l), which is necessary to determine the S parameters. 
The resulting eigenmodes are then used as excitations of 
the 3D dynamic field computations. Finally, the S 
parameters are extracted. 

IV. VERIFICATION 

In order to verify the new hybrid FD method in 
frequency domain (hyb. FDFD), the MMIC-typical 
coplanar structures in Fig. 3, a CPW short-stub and an 
airbridge, are studied. The conventional FD method 
(FDFD) serves as a reference [ 11. 

In Figs. 4 - 6 , the results of the new hybrid method are 
compared to conventional FDFD. For the CPW short- 
stub, the magnitude of the reflection coefftcient S,, is 
plotted in Fig. 4. We find differences of less than 0.12 
degree over the entire frequency range. 

Further verification of the hybrid method is done 
comparing the results for two airbrldges of different 
dimensions. In Fig. 5, reflection IS,,\ / dB is plotted as a 
function of frequency. The agreement between the hybrid 
and the conventional method is good, only at 100 GHz 
small deviations are observed. 

CPW short-stub CPW airbridge 

cross-section cross-section 

Fig. 3. The two structures under investigation: CPW short- 
stub and airbridge. 

0 20 40 60 80 100 

Fig. 4. Reflection coefficient of the CPW short in Fig. 4: 
magnitude S,, against frequency (dimensions: s = 15 km, w = 20 
km, t = 3 @m, h = 200 pm, $ = 100 pm, enclosure: a = 703 Frn, 
b = 250 pm, c = 700 pm; material properties: E, = 12.9, o = 
30 S/pm ). 

In practical design, a second parameter is to be 
considered describing the airbridge, which is its influence 
on transmission phase, the effective length extension AIcpw 
= -arg S,, / &,,, Fig. 6 presents the data for airbridge 1 and 
2. The negative sign indicates that the electrical length 
reduces when inserting the airbridge. The differences of 
the two FD versions are smaller than 0.3 l.tm for both 
bridges, which is well below the practical requirements 
and proves accuracy and usefulness of the hybrid 
approach. 
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Fig. 5. Reflection magnitude IS,,1 / dB of the airbridges 
according to Fig. 3 against frequency (airbridge 1: s = 15 pm, w 
=20~m,t=3~,h=175~, tU =0.4~m,l~=3~m,l~=l0 
Brn, I, = 30 pm.; enclosure: a = 481 pm, b = 250 pm, c = 672 
Frn; material properties: E, = 12.9, D = 30 S/pm; airbridge 2: 
dimensions:s=15~m,w=20pm,t=3pm,h=175~m, !, = 
1.5 pm, I0 = 5 km, Z, = 10 pm, I, = 20 pm; enclosure: a = 68 1 
km, b = 250 pm, c = 650 pm; material properties: E, = 12.9, o = 
30S/pm). 
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Fig. 6. Effective length extensions -A!,,, = arg S,, / &,, of 
the CPW airbridges in in Fig. 5 as a fimct~on of frequency. 

Regarding the computational efforts, the hybrid method 
requires about l/6 of the the conventional method for the 
airbridges, while for the short stub the value is about l/3. 
With the new method, one has to run only a single high- 
resolution magneto-quasi-static field computation per 
frequency point. In conventional analysis, however, as 
many field computations as modes at the ports are 
considered must be performed. Moreover, the better 
matrix condition of the magneto-quasi-static linear system 
should allow for further speed-up in analysis. The 
memory requirements are almost the same so far, since the 
magnetic quasi-static case involves the same number of 
unknowns as its dynamic counterpart. This can be 
improved, however, when applying the correction-factor 

approach only to subregions of a structure, preferably 
those with critical field resolution. 

V. CONCLUSIONS 

The incorporation of quasi-static field solutions into the 
finite-difference method is shown to give a marked 
improvement in CPU time against the conventional FD 
method while maintaining. accuracy. This holds also in 
the lossy case. It is of particular interest here, since skin 
depth increases the required resolution compared to the 
lossless case. Systematic exploitation of the combined 
quasi-static and dynmaic analysis will allow to study more 
complex structures and to speed up design process. 
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